The Challenge of Ambient Plasma Wave Propulsion

19th Advanced Space Propulsion Workshop
Jim Gilland, George Williams
Ohio Aerospace Institute

Leveraging Resources through Collaboration

Outline

- Justification
- II. Concept Description
- III. Approach
- IV. Results
 - A. Magnetosphere Modeling
 - B. Wave Propagation
 - Ray tracing
 - C. Antenna System
 - Sizing and power loading
- V. Conclusions
- VI. Future Work

Justification

- Robust space exploration will ultimately require "living off the land"
- In-Situ propellants and propulsion will reduce launch needs
 - "Near Term" advanced propulsion (chemical, nuclear thermal, NEP) require IMLEO ~ 300 – 1000 mT
 - Feasibility of launching such masses on a regular basis is small

Leveraging Resources through Collaboration

Need to examine potential extraterrestrial sources for propulsion

Concept Description

- Utilize onboard power to couple to environment through plasma waves
 - First look: Alfven waves
 - Observed naturally in astrophysics
 - Postulated as mechanisms for heating and particle acceleration

Leveraging Resources through Collaboration

- Radiate wave energy directionally to produce motion
 - Antennae designed to couple to correct wave and direction
 Thrust ~ Wave field energy
 - Thrust ~ Wave field energy $\frac{\partial B^2}{2\mu_0}$

APPROACH

Analysis Approach

- Develop physical models for wave production/ propulsion
- Assess possible environments
- Model wave propagation in relevant environments (Ray tracing)
- Use propagation results in system design (ANTENA rf plasma code)
 - Antenna size
 - Antenna loading (power)
 - Thrust

Alfven Wave Physics

- Low frequency waves in magnetized plasmas
- 3 modes:

- Shear (|| B)
$$\omega = k \cos(\theta) V_A$$
- Compressional (isotropic)
$$\omega = k V_A$$
- Magnetoacoustic (\perp B)
$$\omega^2 = k^2 (v_A^2 + c_s^2) \qquad c_s = \sqrt{\frac{T_e}{M_i}}$$

$$\omega = k \cos(\theta) V_A$$

$$\omega = k V_A$$

$$\omega^2 = k^2 (v_A^2 + c_s^2)$$

$$V_A = \sqrt{\frac{B_0}{\rho \, \mu_0}}$$

$$c_s = \sqrt{\frac{T_e}{M_i}}$$

- Observed in terrestrial, Jovian, and Solar magnetospheres
 - Offered as possible explanation for coronal heating, acceleration of solar wind, lo plasma torus interactions

Ray Tracing Approach

 Dispersion relation gives wavelength and frequency as functions of environment (B, ρ)

$$(\omega^{2} - k_{z}^{2}V_{A}^{2})(\omega^{4} - \omega^{2}k^{2}(V_{A}^{2} + c_{s}^{2}) + c_{s}^{2}V_{A}^{2}k^{2}k_{z}^{2}) = 0$$

$$\vec{V}_{A}(x,y,z) = \frac{\vec{B}(x,y,z)}{\mu_{0}\rho(x,y,z)} \qquad c_{s} = \sqrt{\frac{kT_{e}}{M_{i}}} \qquad k = \sqrt{k_{z}^{2} + k_{\perp}^{2}}$$

- Wavelength (k) depends on position through magnet and density fields
- Ray tracing follows wave energy as it propagates in magnetosphere
- Requires representative initial conditions

$$- (x,y,z), (k_x, k_y, k_z)$$

Magnetosphere Models

- Standardized simplified model for dipole fields allows calculation structure to be applied to multiple environments
 - Jovian and Terrestrial environments described to date

Jovian Magnetosphere

- Dipole strength ~ 4 nT Rj³
- Plasma density curve fit from literature
- Using a simplified dispersion relation, calculate ω, and k for initial conditions
- Use full fields model for ray tracing

Antenna Modeling

- Antennas determine the dominant axial and perpendicular wavelengths launched
 - Antenna design determines types of fields
 - E, B Axial, radial, azimuthal
 - Antenna dimensions determine dominant wavelengths
- The desired wavelengths are determined from local B and density values

ANTENA Code

- Warm plasma cylindrical wave code
- Originally designed for fusion wave heating applications
 - Radial profiles of n_e, T_e (not self consistent)
 - Axially uniform B₀, n_e
 - Uses real antenna designs/wavelength spectra
 - Calculates radiated power, antenna/plasma coupling
- Can apply ANTENA to the calculated local plasma parameters to determine best antenna size, design for the wave propulsion application

Leveraging Resources through Collaboration

First Antenna Design Considered

- Phased semicircles in parallel
- Potential for changing k_z with phasing of current in the loops
- Considered ± π, π/2, π/4 phasing of loops

RESULTS

Ray Tracing Analysis

- Ray tracing analysis generated from first principles in Mathematica
- Initial conditions generated for multiple Alfven modes throughout terrestrial and Jovian magnetosphere
 - Fast modes also depend on k_⊥ assumed to be ≈ k_z
 for initial calculations
- Wave propagation was been examined throughout the magnetospheres
 - Parallel and perpendicular waves observed
 - Currently examining results for resonance absorption and reflections

Ray tracing initial conditions

- Spatial locations span a range of conditions
 - $(2 R_j < r < 25 R_j)$
- Corresponding wavelengths (k_z, k_⊥) calculated as function of position for each of the 3 modes
- Full wave equation allows for mode conversion

Ray Tracing in Earth and Jupiter Magnetospheres

Ray Tracing in Earth and Jupiter Magnetospheres

Antenna System

- Initial conditions indicate large antenna dimensions, ~ 10 – 100's km
- Some representative antenna in that size range have been modeled in the ANTENA code, using Jupiter magnetospheric B and density values
- Currently examining the effects of antenna size on coupling

Antenna Length studies

Assumes

- Fixed diameter: 500 m
- Vary length from 500 –

1000 km, examine antenna loading, power deposition with k_z

Leveraging Resources through Collaboration

Wave Fields from 2 Antenna Designs

Short Antenna

Long Antenna

Force Estimation for Initial Antenna Designs

	Forces (N)			
Antenna	Left	Right	Net (→ positive)	Thrust Density (N/m²)
Short	703	480	-223	1.1 x 10 ⁻³
Long	399	402	2.53	1.3 x 10 ⁻⁵

 Net thrust is if both ends of antenna are left open to environment

Leveraging Resources through Collaboration

Short antenna provides greater net thrust

Summary of Results

- Ray tracing has shown feasibility of wave propagation
 - Different modes propagate in different directions depending on k_z, k₁
 - Some regions show potential for standing wave formation
- Antenna coupling shows the scale and efficiency of the process
 - 100's of km scale antenna necessary for magnetospheric environment
 - Narrow antenna diameter decreases coupling efficiency
- For antenna design considered:
 - 100's N thrust levels generated at currents
 - Corresponds to mN/m²; lower than ion engine
 - Poor coupling leads to low efficiency

Future Work

- Refine antenna designs
- Assess non-linear wave ("PIT") option
- Apply analysis to helicon (Whistler) waves

Establish Potential Environments

- First approximation Magnetospheres
 - Dipole magnetic field
 - Axisymmetric density
 - Uniform T_e
- Calculate simplified local k for ray tracing
- Assess ray propagation in spatially varying fields

Antenna Design Trades

 Coupling spectra for antennae of varying length and pitch

